US009286272B2

a2z United States Patent (10) Patent No.: US 9,286,272 B2
Harrington 45) Date of Patent: Mar. 15, 2016
(54) METHOD FOR TRANSFORMATION OF AN 6,519,617 Bl 2/2003 Wanderski et al.
EXTENSIBLE MARKUP LANGUAGE 6,540,142 Bl 4;2003 Allebslhouse |
VOCABULARY TO A GENERIC DOCUMENT 0000 00a b2 Y003 Ambler tal.
STRUCTURE FORMAT 6,668,354 B1* 12/2003 Chenetal. ...ccccoor..... 715/255
6,748,569 Bl 6/2004 Brooke et al.
(75) Inventor: Steven J. Harrington, Webster, NY 6,829,745 B2 12/2004 Yassin et al.
(US) 6,908,034 B2 6/2005 Alleshouse
6,912,538 B2 6/2005 Stapel et al.
. . 6,925,631 B2 8/2005 Golds
(73) Assignee: Xerox Corporation, Norwalk, CT (US) 6.941.511 Bl 9/2005 H?nde; al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 2047 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 11/610,324 WO W02004084094 9/2004
OTHER PUBLICATIONS
(22) Filed: Dec. 13, 2006
Anand, Sai et al. “Mapping XML Instances”. May 2005, Association
(65) Prior Publication Data for Computing Machinery.*
Continued
US 2007/0150808 A1 Jun. 28, 2007 (Continued)
A Primary Examiner — Cesar Paula
Related U.S. Application Data Assistant Examiner — Tyler J Schallhorn
(60) Provisional application No. 60/753,043, filed on Dec. (74) Attorney, Agent, or Firm — Basch & Nickerson LLP
22, 2005.
57 ABSTRACT
(1) Int. C1. A method determines structures and features of an original
GO6F 17/22 (2006.01) . . .
(52) US.Cl document to make style decisions. The extensible markup
oo] language of the original document is analyzed to produce
CPC . GOGF 17/2247 (2013.01); G06§ 0112/ %217 instance mapping. The document type definitions of the origi-
. . . (01) nal document are analyzed to produce document type defini-
(58) Field of Classification Search tions mapping. Lastly, the instance schema of the original
CPC ... - GOGF 17/227; GOGF 17/2247 document is analyzed to produce schema mapping. A trans-
USPC TR 7.1 5/236, 239 form is generated from the produced instance mapping, docu-
See application file for complete search history. ment type definitions mapping, and schema mapping. The
. transform is applied to the original document to generate an
(56) References Cited instance in an intermediate format. A stylesheet is selected
U.S. PATENT DOCUMENTS and applied to the intermediate format to produce a styled
document.
6,370,553 Bl 4/2002 Edwards et al.
6,397,231 Bl 5/2002 Salisbury et al. 10 Claims, 3 Drawing Sheets

|
510 i
07~ INSTANCE DATA !l 1000
TYPE DESCRIPTIONS Lo
1 520 530
A 2 v k 2

NALYZE

Al ANALYZE DATA
INSTANCE

TYPE DESCRIPTIONS

ANALYZE
SCHEMA

570

TRANSFORMATION
STYLESHEET

590

1 1 1
540 550
DATA
TTANCE TYPE DESCRIPTIONS poHEMA
MAPPING -

EXTENSIBLE
STYLESHEET LANGUAGE
TRANSFORMER

! STAGE 1

EXTENSIBLE
STYLESHEET LANGUAGE
TRANSFORMER

4

: 600 \
|

I (" TRANSFORMATION |

i STYLESHEET !

: 610 :

| |

T

| |

| (

|

I

US 9,286,272 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,143,104 Bl 11/2006 Turba
7,152,205 B2 12/2006 Day etal.
7,284,196 B2 10/2007 Skeen et al.
7,409,400 B2 8/2008 Ramarao

2001/0018697 Al
2001/0039594 Al
2002/0010715 Al
2002/0040353 Al
2002/0073399 Al
2002/0107913 Al 8/2002 Rivera et al.
2002/0111963 Al 8/2002 Gebert et al.
2002/0194227 Al* 12/2002 Dayetal.
2003/0058469 Al 3/2003 Buis et al.
2003/0061229 Al 3/2003 Lusen et al.
2003/0088543 Al 5/2003 Skeen et al.
2003/0184789 Al 10/2003 Komaki
2003/0227640 Al 12/2003 Liang etal.
2003/0237046 Al 12/2003 Parker et al.
2004/0060004 Al 3/2004 Mani et al.
2004/0088647 Al 5/2004 Miller et al.
2004/0193465 Al 9/2004 Sangroniz et al.

2004/0205656 Al 10/2004 Reulein et al.

2004/0216030 Al 10/2004 Hellman et al.

2004/0261017 Al 12/2004 Perry

2004/0268229 Al 12/2004 Paoli et al.

2005/0004893 Al 1/2005 Sangroniz

2005/0021799 Al 1/2005 Imamura et al.

2005/0050466 Al 3/2005 Sangroniz et al.

2005/0055420 Al 3/2005 Wyler

2005/0150953 Al 7/2005 Alleshouse

2005/0171970 Al 8/2005 Ozzie et al.

2005/0204280 Al 9/2005 Eves et al.

2006/0167909 Al 7/2006 Mendis et al.

2006/0271506 Al* 11/2006 Bohannonetal. 7072
2006/0271850 Al 11/2006 Gombert et al.

2007/0143666 Al 6/2007 Harrington

2007/0150494 Al 6/2007 Harrington et al.

2007/0198539 Al 8/2007 Warshavsky et al.

2007/0226610 Al 9/2007 Da Silva et al.

2007/0245232 Al* 10/2007 Wakeetal. 715/513

OTHER PUBLICATIONS

8/2001 Kunitake et al.

11/2001 Park et al.
1/2002 Chinn et al.
4/2002 Brown, Jr. et al.
6/2002 Golden

707/523

Bossung, Sebastian et al. “Automated data mapping specification via
schema heuristics and user interaction”. Sep. 2004, IEEE Computer
Society.™

Bossung, Sebastian et al. “Semi-automatic discovery of mapping
rules to match XML Schemes”. Nov. 25, 2003, University of
Auckland.*

Boukottaya, Aida et al. “Automating XML document Transforma-
tions: A conceptual modelling based approach”. 2004, Australian
Computer Society.™

Embley, David W. et al. “Automatic Direct and Indirect Schema
Mapping: Experiences and Lessons Learned”. 2004, Association for
Computing Machinery.*

Su, Hong et al. “Automating the Transformation of XML Docu-
ments”. 2001, Association for Computing Machinery.*
Berners-Lee, Tim et al. “Request for Comments 1866: Hypertext
Markup Language—2.0”. Nov. 1995, W3 Consortium.*

Su, Hong et al. “Automating the Transformation of XML Docu-
ments” in “Proceedings of the 3rd International Workshop on Web
Information and Data Management”. 2001, Association for Comput-
ing Machinery. <http://doi.acm.org/10.1145/502932.502946>*
Waroruntu, Stella et al. “XSLTGen: A System for Automatically
Generating XML Transformations via Semantic Mappings”. 2004,
Springer-Verlag.*

The file history of U.S. Appl. No. 11/304,857 as of Apr. 22, 2009.
The file history of U.S. Appl. No. 11/610,950 as of Apr. 22, 2009.
The file history of U.S. Appl. No. 60/753,043 as of Apr. 22, 2009.
The prosecution history for U.S. Appl. No. 11/304,857 between Apr.
22, 2009 and Nov. 16, 2009.

The prosecution history between Apr. 2, 2010 and Oct. 4, 2010 for
U.S. Appl. No. 11/610,950.

The prosecution history between Nov. 19, 2009 and Jul. 22, 2010 of
U.S. Appl. No. 11/304,857.

The prosecution history between Apr. 22, 2010 and Aug. 9, 2010 of
U.S. Appl. No. 11/610,950.

The prosecution history between Aug. 10, 2010 and Mar. 8, 2011 for
U.S. Appl. No. 11/304,857, filed Dec. 15, 2005, published Jun. 21,
2007 as US-2007-0143666-A1; Inventor S.J. Harrington.

The prosecution history between Jan. 11, 2011 and Mar. 28, 2011 for
U.S. Appl. No. 11/304,857, filed Dec. 15, 2005; published Jun. 21,
2007 as US-2007-0143666-A1; Inventor Steven J. Harrington.

The Prosecution History Between Mar. 8,2011 and Oct. 25, 2011 for
U.S. Appl. No. 11/304,857, filed Dec. 15, 2005, Published Jun. 21,
2007, as US-2007-0143666-A1; Inventor: Steven J. Harrington.
The Prosecution History Between Oct. 5, 2010 and May 10, 2012 for
U.S. Appl. No. 11/610,950, filed Dec. 14, 2006, Published Jun. 28,
2007, as US-2007-0150494-A1; Inventor: Steven J. Harrington et al.
Bossung et al, “Automated data mapping specification via schema
heuristics and user interaction” Oct. 18, 2004, IEEE, pp. 1-10 + one
abstract page, 11 pages.

Chatvichienchai (Somchai) et al “Authorization Translation for XML
Document Transformation”, 2004, Kluwer Academic Publishers, p.
1-28.

The Prosecution History for U.S. Appl. No. 11/610,950 between Apr.
22,2009 and Apr. 5, 2010.

* cited by examiner

U.S. Patent

Mar. 15, 2016

50

USER
INTERFACE

A 4

Sheet 1 of 3 US 9,286,272 B2

206

CONTROLLER

207

A
A 4

A
A 4

A
A 4

A
A 4

PRINT
ENGINE

MEMORY

NETWORK

INTERFACE

EXTENSIBLE MARKUP
LANGUAGE PROCESSOR

55

400 ~

- 204

- 205

FIG. 1

300

300

310

A 4

WORKFLOW

SELECTION ENGINE

430

410
4
320

Y

420
p.

EXTENSIBLE MARKUP
LANGUAGE ENGINE

FIG. 2

U.S. Patent Mar. 15, 2016 Sheet 2 of 3 US 9,286,272 B2

3100
3150
410~ WORKFLOW 430
SELECTOR >
3130 3140
WORKFLOW DOCUMENT
SPECIFICATION POOL || FRAGMENT POOL
f
| |
PROCESSED
400~ | | FRAGMENT AND INITIAL 420
FRAGMENT
WORKFLOW GENERATION
SEPARATOR
3110 \-3120

FIG. 3

US 9,286,272 B2

Sheet 3 of 3

Mar. 15, 2016

U.S. Patent

I 39VIS

d3INHO04SNYHL

_ Z 39v1S
|
| YINHO4SNYHL
«—{ Y3LIYNHO4 [+ 3DVNONYT 1ITHSTTALS
30d 3749ISN3LX3
029~ 019~

133HSTTALS
NOILYINHO4SNVHL

OVNINYT 1IIHSITALS
J14ISNILX3

A

066~

133IHSTTALS
NOILYINHO4SNYHL

08s

NOILYHINID
<1 133HSTIALS

048

A

Bl

INIddVIN
YINIHOS

Ll

INIddVIN
SNOILAIHIS3A IdAL
vivd

INIddYIN
JONYLSNI

SNOILdIH3S3d IdAL
V1VQ JONVLSNI

00s

056 0bS
| | |
YINFHIS SNOILdIH3S3d 3dAL JINVLSNI
JZATYNY Y1vd FZATVNY JZATYNY
065 = 0zs

US 9,286,272 B2

1
METHOD FOR TRANSFORMATION OF AN
EXTENSIBLE MARKUP LANGUAGE
VOCABULARY TO A GENERIC DOCUMENT
STRUCTURE FORMAT

PRIORITY INFORMATION

This application claims priority under 35 U.S.C. §119(e)
from U.S. Provisional Patent Application, Ser. No. 60/753,
043, filed on Dec. 22, 2005. The entire content of U.S. Pro-
visional Patent Application, Ser. No. 60/753,043, is hereby
incorporated by reference.

BACKGROUND

Encoding documents for digital printing is conventionally
done in a document or image processing device that is typi-
cally separate from the printing device. The processing device
may be a personal computer or other document/image pro-
cessing/generation device. The processing device, typically,
has a generic print driver application that encodes and sends
documents for reproduction by a particular printer connected
thereto, through a communication channel or network.

The generation of standard document types is a growing
trend. Such standards have been greatly encouraged and
facilitated by the use of the standard extensible markup lan-
guage. However, the reproduction of standard extensible
markup language is not an easy task as the standard extensible
markup language has been, conventionally, converted by the
user into some type of format that is readily acceptable to a
printing device.

Moreover, most conventional extensible markup language
processing systems have been designed to handle specific
processing with respect to specific extensible markup lan-
guage vocabularies. Although a few conventional extensible
markup language platforms have been created for the devel-
opment of different processing sequences in support of dif-
ferent vocabularies and workflows, these conventional plat-
forms are still fixed and static.

Representations such as extensible markup language allow
the creation of vocabularies to express data and documents.
These vocabularies provide a mechanism for expressing the
semantics of the information along with its structure. How-
ever, to view the information, a stylesheet is needed which
understands the semantics and how the information should be
presented.

It is a further problem when documents are composed of
parts of other documents because a compatible set of
stylesheets that matches all of the vocabularies must be
assembled.

Furthermore, extensible markup language allows the cap-
ture of information from full documents for people to the data
of messages. Some extensible markup language vocabularies
(such as scalar vector graphics) contain formatted document
information. Moreover, some extensible markup language
vocabularies (such as extensible stylesheet language format-
ting objects) contain formatting instructions. However, most
extensible markup language vocabularies encode informa-
tion without formatting.

In order to present the document for human consumption,
formatting information must be introduced and applied. This
is typically done through a stylesheet. However, it is possible
to view the document without a stylesheet because a
stylesheet does not exist, is unavailable, or is inappropriate
for the display device. Default stylesheets are possible, but
the default stylesheets typically do not provide very satisfac-
tory renditions.

15

25

40

45

50

2

Thus, it is desirable to provide a format for which generic
style sheets could be written, and into which arbitrary vocabu-
laries could be translated. Moreover, it is desirable to convert
a document to an intermediate format that represents the
document’s structure and for which stylesheets could be pre-
defined. Furthermore, it is desirable to analyze a document to
determine a mapping between a native vocabulary of the
document and another vocabulary, thereby enabling an appli-
cation of a generic document layout and style.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings are only for purposes of illustrating an
embodiment and is not to be construed as limiting, wherein:

FIG. 1 illustrates the architecture of a device with an
embedded extensible markup language processor;

FIG. 2 illustrates a block diagram of an extensible markup
language processing system;

FIG. 3 illustrates a block diagram of another example of a
workflow selection engine for an extensible markup language
processor; and

FIG. 4 illustrates a block diagram showing an implemen-
tation of two-stage processing for display of documents with-
out formatting information.

DETAILED DESCRIPTION

For a general understanding, reference is made to the draw-
ings. In the drawings, like references have been used through-
out to designate identical or equivalent elements. It is also
noted that the drawings may not have been drawn to scale and
that certain regions have been purposely drawn dispropor-
tionately so that the features and concepts could be properly
illustrated.

FIG. 1 illustrates an overall system architecture that
includes a print engine 55, a user interface 50, a memory 204,
a network interface 205, a controller 206, an extensible
markup language processor 300, and a bus 207.

The print engine 55 converts digital signals representing an
image into a hardcopy of that image on a recording medium.
A central bus 207 provides interconnections and intercom-
munications between the various modules and devices con-
nected thereto. A memory 204 store a variety of information
such as machine fault information, machine history informa-
tion, images to be processed at a later time, instruction sets for
the machine, job instruction sets, etc.

The user interface 50 allows the user to select the various
functions of the digital printing device, program various job
attributes for the particularly selected function, provide other
input to the digital printing device, as well as, display infor-
mational data from the digital printing device. The controller
206 controls all the functions within the digital printing
device so as to coordinate all the interactions between the
various modules and devices.

The extensible markup language processor 300 receives
extensible markup language data and converts this data into a
page description language which can readily utilized by the
controller 206 and print engine 55 to generate the appropriate
document or image. The details of this process will be
explained in more detail below.

The following descriptions will useful in understanding the
operations of the extensible markup language processor.

Extensible markup language is a conventional standards-
based way of organizing data and metadata in the same docu-
ment. More specifically, extensible markup language is not a
fixed format, but rather a meta language that enables the
design of customized markup languages for different types of

US 9,286,272 B2

3

documents. Extensible markup language is a markup lan-
guage because every structural element is marked by a start
tag and an end tag giving the name of the element. In other
words, the metadata of the extensible markup language is
enclosed within tags. With respect to the input stream of the
document, a tag may be delimited by the symbols “<” and
“>”_ In one implementation, extensible markup language can
be used as the format for receiving input data and metadata.

An extensible markup language vocabulary is a collection
of extensible markup language tags (element and attribute
names) intended to be used together as a single markup lan-
guage. An extensible stylesheet language transform is a set of
rules for transforming a source extensible markup language
document into a result extensible markup language docu-
ment, using the syntax defined in extensible stylesheet lan-
guage transformations. Extensible stylesheet language trans-
formations are often used to insert styling instructions into an
extensible markup language document or to convert the
extensible markup language document into an extensible
markup language vocabulary designed for formatting.

An extensible stylesheet language transform imparts style
to the data and can also be a general tree transformation
language. Moreover, an extensible markup language schema
is the formal definition of an extensible markup language
vocabulary.

An extensible stylesheet language transform is a way of
expressing a mapping of metadata tags and print format
instructions.

Since an extensible stylesheet language transform and an
extensible markup language schema are text based docu-
ments, the extensible stylesheet language transform and
extensible markup language schema can be easily stored in a
memory. Although extensible stylesheet language transforms
can be written that work well in the absence of an extensible
markup language schema, more expressive mappings can be
written in an extensible stylesheet language transform if an
extensible markup language schema for the input document is
supplied.

The extensible stylesheet language is an extensible markup
language vocabulary for specifying formatting semantics.

As noted above, extensible markup language processing
systems have been designed to handle specific processing on
specific extensible markup language vocabularies and work-
flows. Vocabularies are developed for specific problems and
needs. The workflows to handle those problems are generally
fixed such that each extensible markup language file under-
goes the same processing steps.

Conventional extensible markup language processing sys-
tems have also been designed for the development of different
processing sequences in support of different vocabularies and
workflows. However, these extensible markup language pro-
cessing systems are still fixed and static.

More specifically, these extensible markup language pro-
cessing systems assemble pipelines of processing steps so
that the system has a variety of processing steps from which
to choose. However, notwithstanding the variety, the exten-
sible markup language process is defined by a fixed sequence
of steps. Extensible markup language files can be processed
through the pipeline, but the pipeline is not dynamic or recon-
figurable. Further, if any step in the pipeline stalls (e.g. while
waiting on data retrieval) all of the processing is temporarily
halted.

Thus, it is desirable to provide an extensible markup lan-
guage processing system that is able to efficiently print any
arbitrary sequence of extensible markup language vocabular-
ies that are submitted. More specifically, it is desirable to
provide an extensible markup language processing system

10

15

20

25

30

35

40

45

50

55

60

65

4

that is able to provide a printing component that can support
any workflow as well as arbitrary submissions.

Extensible markup language files differ from traditional
page description language files in the degree of document
completion. While some vocabularies (such as scalable vec-
tor graphics) may be laid out and ready for printing, other
vocabularies require more processing before printing can be
attempted. The processing can include retrieval of informa-
tion and insertion of files, conducting database queries, per-
forming transformations, styling, formatting, and layout. Dif-
ferent vocabularies and even different jobs using the same
vocabulary can require different processing specifications.

FIG. 2 illustrates a system and architecture for extensible
markup language document processing engine 300 that
addresses the various problems discussed above. The exten-
sible markup language document processing engine 300 is
suitable for parallel processing of dynamically determined
workflows.

As illustrated in FIG. 2, the extensible markup language
document processing system 300 receives two basic data
element types 420, a document fragment and a workflow
specification. There are many options for how these two data
elements are implemented.

For example, in an object oriented implementation, docu-
ment fragment objects and workflow specification objects
could be defined. Alternatively, in another system, a docu-
ment fragment could be defined as auniform resource locator,
and the processing in a workflow specification might be
defined as the selection of a predefined pipeline. Another
option might be to represent document fragments as files and
workflow specifications as scripts. Each workflow specifica-
tion has a corresponding document fragment. It is noted that
a document fragment and its workflow specification might be
combined into a single object.

A document fragment’s workflow specification describes
the processing that should be carried out on that document
fragment. The conventional extensible markup language
document processing system typically results in one or more
new or revised document fragments. However, the extensible
markup language document processing engine 300 differs
from the conventional systems in that the extensible markup
language document processing engine 300 also generates
new workflow specifications.

The extensible markup language document processing sys-
tem 300 deciphers the workflow specification in the workflow
selection engine 310. The extensible markup language docu-
ment processing system 300 also performs the processing on
a document fragment in the extensible markup language
engine 320. The extensible markup language engine 320
receives workflow specifications and document fragments to
be processed 410. Upon receiving this data, extensible
markup language engine 320 decides which pipeline is speci-
fied for the document fragment and runs that document frag-
ment through the pipeline. However, as noted above, in this
architecture, the pipelines of the extensible markup language
engine 320 produce new workflow specifications as well as
modified fragments 400.

The results 400 of the processing operations of the exten-
sible markup language engine 320 are fed back to the work-
flow selection engine 310. The workflow selection engine 310
determines if the received results 400 are a final output 430 or
require further processing 410.

A workflow specification may indicate processing that
requires or integrates additional information beyond the frag-
ment itself. For example, the workflow specification might
require the insertion of data from a file or other fragment.
Also, the workflow specification might transform the frag-

US 9,286,272 B2

5

ment using an additional style sheet or validate the fragment
using an additional schema. The workflow specification
might include a list of the required resources.

Moreover, a workflow specification may indicate process-
ing that produces more than one fragment-worktlow specifi-
cation pair as its result. For example, the workflow specifica-
tion might subdivide the fragment into smaller fragments. In
that case, the process would result in a set of sub-fragments,
each sub-fragment having a workflow specification, and,
optionally, a fragment that references the set of sub-fragments
and a workflow specification that reintegrates the processed
sub-fragments.

The extensible markup language document processing
engine 300 also determines, configures, and performs diverse
processing which various jobs may require. In addition, the
extensible markup language document processing engine 300
can separate the processing into multiple independent
threads, where appropriate, so that if one thread is blocked or
delayed, processing can still continue on other threads.

As noted before, the workflow specification indicates the
processing to be done on a document fragment. However,
processing, from time to time, may involve requiring the use
of additional information or resources, as illustrated in F1IG. 2.
In these instances, the workflow specification may list the
resources. This is particularly desirable when the resources
are other processed document fragments. The information
involving the use of additional information or resources is
used by a workflow selection engine.

An example of a workflow selection engine is illustrated in
FIG. 3. As illustrated in FIG. 3, an initial document 420 is
received by an initial fragment generator 3120 which breaks
the initial document 420 up into document fragments and
workflow specifications. The initial fragment generator 3120
send the workflow specifications to a workflow specification
pool 3130 and sends the document fragments to a document
fragment pool 3140. A workflow selector 3150 examines the
workflow specifications to determine whether the resources
required to support the processing are available to process the
initial document 420.

For example, if the workflow specification indicates the
aggregation of previously processed sub-fragments, a work-
flow selector 3150 determines if the processing of these sub-
fragments has been completed. The workflow selector 3150
decides which fragments are ready for processing and sub-
mits the fragments 410 to the extensible markup language
processing engine 320 of FIG. 2. The worktlow selector 3150
also determines when all processing on the document is com-
plete and outputs the final result 430.

A processed fragment and workflow separator 3110 col-
lects the results 400 from the extensible markup language
processing engine 320 of FIG. 2 and stores the separated
results in the document fragment pool 3140 and workflow
specification pool 3130.

One possible implementation of the workflow selection
engine 3100 is as a web service that interacts with other
services. Alternatively, the workflow selection engine 3100
might be implemented as a method that operates on a work-
flow pool object in a more direct programming approach.

In operations, the workflow selection engine 3100 accepts
a document 420 for processing. Using the initial fragment
generator 3120, the document and associated job information
are separated into an initial fragment and workflow specifi-
cation. The initial fragment and workflow specification 410 is
then submitted to the extensible markup language processing
engine 320 of FIG. 2 and the results 400 returned. For simple
jobs, this may be all that is necessary and the processed
fragment would be output.

10

15

20

25

30

35

40

45

50

55

60

65

6

However, some processing options might be analyzers that
decide what additional processing is needed. The analyzers
result in new workflow specifications, not just modified docu-
ments.

For example, a document may be transformed in such a
way as to generate file inclusions, database queries, or addi-
tional transformations. In the workflow selection engine
3100, an analyzer detects the transformation and specifies the
appropriate additional processing, thereby avoiding the
anticipating of such possibilities in advance and predefining
the processing pipeline.

The workflow selection engine 3100 may also detect pro-
cessing that requires external resources. If the workflow
selection engine 3100 detects the requirement for external
resources, the workflow selection engine 3100 separates the
external resource processing into its own fragment and work-
flow specification. In this way, delays in resource acquisition
need not block other processing.

It is noted that there is no requirement that the document
fragment pool 3140 and workflow specification pool 3130
contain elements from only one document. The workflow
selection engine 3100 may allow multiple documents as well
as multiple parts of a document to be processed in parallel.

Moreover, workflow selection engine 3100 might con-
struct workflows dynamically. On the other hand, workflow
selection engine 3100 may select from a set of basic pre-
defined workflows, such as: check the syntax of a fragment to
see if it is well-formed; examine the namespaces of a frag-
ment and separate into sub-fragments by namespace, includ-
ing a fragment for reintegration; examine the fragment for
special namespaces (e.g. scalable vector graphics, extensible
stylesheet language formatting objects, extensible hypertext
markup language, personalized print markup language tem-
plate) and assign a matching workflow specification; examine
a fragment and determine what style transformation if any
should be applied and assign a workflow to apply the trans-
formation; separate file inclusions as sub-fragments and
specify workflows to retrieve and insert the files, also con-
structing a fragment for the reintegration; insert files specified
by a fragment and assign a workflow to analyze the result for
further processing; and/or apply a transformation to a frag-
ment and assign a workflow to analyze the result for further
processing.

As noted above, extensible markup language permits the
separation of document content and style. In order to view the
document, the style and layout information is established by
applying a stylesheet. Stylesheets are rare and usually diffi-
cult to create. Even when a stylesheet exists, the stylesheet
may not be appropriate to the desired output device or format.

Extensible stylesheet language provides a language for the
creation of stylesheets, but such stylesheets are typically
matched to a particular extensible markup language vocabu-
lary. A stylesheet may produce the desired effect for one
vocabulary, but the same stylesheet, conventionally, cannot
be used with a different vocabulary. Thus, it is desirable to
generalize a stylesheet so that the stylesheet can be applied to
documents other that those of the vocabulary to which the
stylesheet was originally intended.

Initially, to realize a stylesheet that can be applied to docu-
ments other that those documents having the vocabulary to
which the stylesheet was originally intended, generic equiva-
lents to particular vocabulary specific element references are
determined. Thereafter, the generic equivalents replace the
specific references in the stylesheet. Documents with arbi-
trary vocabularies are also converted to corresponding

US 9,286,272 B2

7

generic semantics directed towards styling and layout. The
converted stylesheet can then be applied to the converted
document.

More specifically, a document format can be expressed
using logical structure and attributes relevant to styling such
that a document’s semantics are geared towards presentation.
This document format does not directly contain the style or
layout information, but rather the document format structures
and labels document components in a way that is consistent
with typical styling practices.

For example, font family, font size, and color are typically
associated with strings, while line spacing and indentation are
associated with paragraphs. Bullet style is associated with a
list and cell alignment is associated with a table.

The document format defines the string, paragraph, list,
and table objects to which the style properties can be bound.
The document format is generic in that the document format
only attempts to describe the logical structure that typical
documents employ for styling. This document format allows
documents with arbitrary vocabularies to be translated into
this document format, whereupon styling and layout may be
performed.

As noted above, the generic document format captures the
logical structure of the document and attributes relevant to
layout. This generic document format limits the semantics to
only what is needed for layout and provides a target repre-
sentation for use with generic stylesheets. This generic docu-
ment format can be useful for styling extensible markup
language documents that lack appropriate stylesheets. This
generic document format can also provide a common vocabu-
lary into which documents that have mixed vocabularies can
be transformed. Further, this generic document format can be
helpful in developing correspondences between elements of
different vocabularies.

To realize the generic document format, some basic con-
tent elements and logical relationships therebetween are iden-
tified. Also, structures which arise from logical relationships
(for example, lists and tables) and structures which arise from
the content encoding (for example, strings) are distinguished.

Once a generic document format is realized, a set of
stylesheets can be defined for the generic document format. In
other words, using the stylesheets defined for the generic
document format, if a document is transformed into the
generic document format, these stylesheets may be applied to
the document.

Thus, the generic document format provides a target rep-
resentation for use with generic stylesheets. The generic
document format can also provide a common vocabulary into
which documents that have mixed vocabularies can be trans-
formed, thereby enabling the development of correspon-
dences between elements of different vocabularies.

The elements of the document format being defined should
match the binding of style parameters as well as capture the
logical relationships that style is often used to convey. The
generic document format supports two types of content,
namely text and image. For text, a distinction is made
between the logical structuring of the content, and the struc-
ture arising from the encoding of that content. The basic
content element for text is the Paragraph.

Paragraphs can be part of more complex logical structures
such as lists or tables. Within the paragraph there are charac-
ters that make up words, words that make up sentences and
sentences that form the content element. This is a reflection of
the way text is encoded as a linear sequence.

In the document format being defined, this structure is
expressed as a String element. The String can contain a text
literal, or other String element, or a mixture of Strings and text

10

15

20

25

30

35

40

45

50

55

60

65

8

literals. The style properties associated with Paragraphs
include properties, such as line spacing, left and right inden-
tations, first line indentation, before and after spacing, and
quadding (alignments). The style properties associated with
Strings include, for example, font family, font size, font
weight, character spacing, and character color.

The generic document format includes a Graphic element
for non-text content. This could be images or graphics. The
Graphic element is typically treated as a foreign object. Style
properties associated with the Graphic element could include
spacing before or after it, borders, and background.

For systems that are aware of fine distinctions and addi-
tional style choices, an expansion of the non-text elements
might be needed. For example, one might distinguish
between graphics and images and perhaps give images a
gamma correction style property. One might also express
greater detail in the description of graphics, perhaps distin-
guishing strokes from polygons and associating end-cap style
properties with strokes and fill pattern properties with the
polygons. The document format should be able to express the
logical structures and style binding of the system. For an
extensible markup language system, text and non-text ele-
ments are usually adequate.

There is an additional content element, Ignore, which is
applied to content that is not expected to be presented and
viewed. This can be used for metadata and for elements in the
original vocabulary that have attributes, but no content.

Instances of the above content elements can be combined
in higher-order structures. The simplest such structure is the
Group. Elements in a group belong together, but there is no
required ordering. Style properties associated with a group
might include border, background, indents, and spacing
before and after.

Elements can also be organized into lists, which differ from
groups in that there is an order relationship among the ele-
ments. The generic document format defines two list types:
Homogeneous List, where all of the list elements of the list
have identical type, and Heterogeneous List, where the list
elements can have different types. The reason for the two
types is that homogeneous lists may offer opportunities for
styling that heterogeneous lists do not. For example, the
attributes of the elements of a homogeneous list might be
presented as a table. Also numbering typically makes more
sense for a homogeneous list. In addition to the style proper-
ties associated with groups, lists can specify labeling such as
numbering or bulleting as well as properties of the labels such
as their positions.

One way to define lists is to separate the list element (that
specifies ordering and has the style properties of a group)
from a List item element (that specifies the label and has
associated the label style properties). Lists then contain list
items which in turn contain the various list content structures.
The advantage of this additional layer of structure is that it
supports the use of different label specifications for different
list members.

The format also includes support for two-dimensional rela-
tionships in the form of a Table. In implementation, this
element contains a table body and optional header and footer
elements. Headers and footers can be generated at the start
and end of each page that the table covers. Style properties
can describe when and where headers and footers should
appear as well as border and background properties.

A TableBody element contains the sequence of rows that
form the table. A TableBody can have its own border and
background style specifications.

TableRow elements are used to specify the rows of the table
body as well as the table header and footer content. In addition

US 9,286,272 B2

9

to border and background properties, and table row can have
associated height and visibility style decisions.

Each table row is composed of TableCell elements. Style
properties that can be associated with table cells can again be
border, background, and visibility, but in addition can include
the horizontal and vertical alignments of the cell content.

While the above set of elements describes one implemen-
tation, other variations and additions are possible. One might,
for example, have a particular element for numbers if there
are style specifications particularly targeted towards numbers
(e.g. Arabic or Roman numerals). A format can be defined
that matches the styling capabilities that are to be supported
and captures the logical structure of the document which
those style properties are meant to convey.

Style properties can be used to convey information besides
the document’s logical structure. If, for example, a word is
important, it might be emphasized with size or weight or
color. In order to construct stylesheets that can be applied to
documents created in an arbitrary vocabulary; an arbitrary
vocabulary is converted to a generic form sufficient for attach-
ing the style specification. That form should contain a means
for attaching style that conveys information other than struc-
ture. Attributes that can be used to make style decisions are
added to the structure independent of the vocabulary. One
such attribute might be a class identifier that identifies the
original element.

For example, paragraphs mapped from dates could then be
distinguished from paragraphs mapped from addresses. One
could use the original element name as the value of the class
attribute, but the class attribute then looks vocabulary depen-
dent.

Alternatively, one could use generic names such as classl,
class2, etc., but this just hides the dependency, since there is
no reason for element mapped to classl for vocabulary A to
match in any way elements mapped to class1 for vocabulary
B.

A class attribute, then, is only valuable for determining if
two elements originated from the same class, but not how that
class should be styled. As such, it does not much matter if
original element names or generic substitutes are used. What
are needed are generic properties that capture the motivation
behind the style specification.

If, for example, one had an “importance” property, the
stylesheet could emphasize elements with high importance
values. It would not matter what the originating vocabulary
was, so long as the importance attribute was appropriately set.
Since the potential types of information that one might wish
to convey through style choices is unlimited, it might seem
that the number of possible attributes is also unlimited.

However, one should only need enough attribute dimen-
sions to match the degrees of freedom offered by the style
choices. This could still be large. However, in order to actu-
ally communicate information through style, the viewer must
be able to distinguish and interpret the choices. This tends to
limit the effective attribute dimensionality.

Another issue is how to quantify the attributes for a given
vocabulary. As in the case of the structural mapping, heuristic
measures can be applied to the information available. That
information may be the document instance, but might also
include the schema or document type definitions, other docu-
ment instances, and possibly stylesheets designed for the
vocabulary.

The following is, as an example, a discussion of possible
attributes, some of which might be used for generic styling.

The attributes which characterize content attempt to quan-
tify the probability that the element is of a certain type.
Therefore, the values of these attributes range from Oto 1. A

40

45

55

10

possible method of assigning values to these attributes is to
look for the name of the type in the element name or element
type name. Another possible method is to scan the content for
words commonly associated with the type. For example, the
element name can be scanned for ‘address’, ‘St.’, etc.

A Naming element names an organization, place, person,
etc. More specifically, a Person Naming element often con-
tains a first name and last name. An element which has a high
Address-like value has components such as street, city, and
zip code. These elements would use one of several standard
address styles. Date-like and Time-like elements describe a
date or time. This attribute can be used to select among many
date and time formats in general use.

Text-Like elements are composed of strings characters
separated into words. Sentence-like elements also have punc-
tuation and capitalization. Title-like elements have most
words capitalized. In contrast, Data-like elements do not look
like sentences or titles. Data-like elements may have unusual
capitalization or numbers interspersed throughout. In
schema, Data-like elements could be enumerated types,
tokens, or one of the legacy types such as ID, or ENTITY. An
element with a high Number-like value contains a high pro-
portion of numerals. Data-like and Number-like elements
could be styled with different fonts.

Metadata-like elements describe the content of the ele-
ments to which they refer. These elements give additional
information which could be helpful in assigning values to the
attributes of other elements or in determining style of other
elements.

Whitespace-important is a measure of how important to the
integrity of the information it is to preserve the whitespace
such as tabs, and spaces.

The Importance attribute indicates whether this element is
the primary or main content. Often Important elements
appear near the beginning of the document. Elements with the
words ‘warning,” ‘caution,” ‘danger’ could also be important.
The style for important elements could emphasize the impor-
tance using italics or color, for example. The Centrality
attribute measures the probability that this element contains
the core message or main theme of the document. The ele-
ment may be named ‘body’ or ‘main’ and would contain a
high concentration of key words recurring throughout the
document. The Distinctiveness attribute is a measure of how
different this element behaves or appears compared to its
neighbors.

A variety of attributes may be defined which capture vari-
ous functions of elements. A Labeling element gives infor-
mation, such as ownership, identity, or price, of another ele-
ment. For example, captions or section numbers are Labeling.
These elements may be styled in a complementary manner to
distinguish them from the elements which they label. A Sum-
marizing element covers the main points of the document in a
succinct manner. An Anchor element is referenced in another
part of the document, for example a footnote or hyperlink
target. A Referencing element is a notation or direction at one
place to pertinent information at another place. The word
‘reference’ or ‘ref” may be present in the content or element
name or type name. Hyperlinks are also referencing.

An element which has a high Attention-grabbing value is
one which should stand out from its surroundings, for
example advertising material. Often the words ‘warning,’
‘caution,” or ‘danger’ are present in the content or element
name. A style which is dramatically different from the style of
the surrounding elements could be applied to an Attention-
grabbing element.

The function of some elements is to identify something.
The function of other elements specify some member of a set.

US 9,286,272 B2

11

Elements that contain names are often identifying. Elements
that provide knowledge and understanding are Informing.
There are also Decorating elements that tell how to handle
other elements. Elements that specify style are examples of
Decorating elements. Separating element act to separate
other elements. A rule inserted between two paragraphs is an
example of a separating element.

Some structural attributes are useful in computing values
of other the classes of attributes. Some of the structural
attributes have values ranging from 0 to 1 and others range
over the positive integers. If these attributes are calculated
from an instance document, typical values can be determined
since other instance documents of the vocabulary may have
different compositions. If a schema is available for analysis,
more definitive values may be assigned.

Typical size of contained content is the number of charac-
ters in this node and all children nodes of all subtrees. Typical
number of children, Typical number of siblings, and Typical
number of attributes can be useful in computing the Fragment
Characterization Attributes such as Distinctiveness. Typical
diversity of children and Typical diversity of siblings are a
measure of how many different element types are represented
by the children or siblings.

A possible method of computation is to simply find the
ratio of the number of different types to the number of chil-
dren or siblings. The attribute Typical similarity to siblings
measures how many of the sibling elements have the same
type as this element. Typical position among siblings is the
order of appearance of this element in the list of siblings. This
value might be used in the computation of the Importance
attribute. The value of Typical depth in document tree, which
could be calculated, for example, as the number of genera-
tions between this node and the root, is helpful for determin-
ing values of some Content Characterization Attributes. For
example, Title-like elements are typically closer to the root
and Anchor elements are typically deeper.

We do not claim that the attributes listed are the complete
or even the correct set, but provide them only as an example
ot how generic attributes could be defined for a generic docu-
ment format relevant to styling.

The following is a description of heuristics for extracting
translation mappings from document instances in the arbi-
trary vocabulary, and from its document type definitions or
Schema.

Representations such as extensible markup language allow
the capture of information from full documents for people to
the data of messages. While some extensible markup lan-
guage vocabularies such as scalable vector graphics contain
formatted document information and others such as exten-
sible stylesheet language formatting objects contain format-
ting instructions, most vocabularies encode information with-
out formatting.

In order to present the document for human consumption,
formatting information must be introduced and applied. This
is typically done through a stylesheet. However, it is conceiv-
able that one could wish to view the document without a
stylesheet (either because a stylesheet does not exist, or is
unavailable, or is inappropriate for the display device).
Default stylesheets are possible, but default stylesheets typi-
cally do not provide very satisfactory renditions.

It is noted that the conversion of the document to an inter-
mediate format could represent the document structure and
for which stylesheets could be predefined. A natural source of
information on how to convert from the initial native vocabu-
lary to the intermediate format is the document instance itself.
In this implementation, heuristic rules can be applied to a

40

45

12

document instance to determine probable mappings from the
document vocabulary and the intermediate format.

An instance of adocument in some native vocabulary (such
as an extensible markup language encoding) can be analyzed
to determine a mapping between this native vocabulary and
another vocabulary, as an intermediate format. One reason for
mapping to the intermediate format is for the application of
document layout and style. Stylesheets may be defined for the
intermediate format when stylesheets for the native vocabu-
lary may be inappropriate or unavailable. Thus, conversion to
the intermediate format can permit styling of the document to
go forward.

The intermediate format might also be used to merge docu-
ment elements from different vocabularies or to apply generic
transformations to documents. Information on how to do the
mapping from the native vocabulary to the intermediate for-
mat can come from a variety of sources. In addition to the
document instance, the document type definitions or schema
for the vocabulary could be used to determine the mapping.

The intermediate format is designed to capture the seman-
tics of document structures that can be shown by style, layout,
and formatting decisions. A possible intermediate format can
express logical structure and attributes relevant to styling.
Examples of possible attributes are Group—FElements that
belong together; List—A group of elements that are ordered;
Homogeneous List—A list of elements with identical types;
Table—A group of elements that have two-dimensional rela-
tionships; A Table is composed of Table Rows, which are in
turn composed of Table Cells; Paragraph—{for textual con-
tent; Graphic—for graphic and image content; Ignore—for
information not displayed; and/or String—for the internal
structure of text. One may also wish to attach some generic
attributes to the structure elements, for example, one might
wish to label a string as being number-like.

Since mapping information can come from a variety of
sources, and many rules provide probable (not absolute) map-
pings, probabilities are established for the mapping of each
native vocabulary element present in the instance to each of
the possible intermediate format element types. The heuristic
rules adjust the probabilities. With this approach, it is accept-
able if more than one rule matches an element; the element
simply receives the probability adjustments from all of the
matching rules. This is in fact likely to occur since in many
vocabularies an element can appear at multiple points within
the document.

At each such point the rule set could be applied to refine the
element’s mapping. Also, with this approach, probabilities
obtained from one information source (such as analysis of a
document type definition) can be merged with probabilities
from a different source (such as the document schema). After
analysis, additional processing may be performed to guaran-
tee that the probabilities are consistent (for example that one
does not have a table as the offspring of a string). At the point
where one is ready to construct the mapping transformation,
the most probable intermediate format element is selected.

The information gained from a document instance is dif-
ferent from that found from a document type definitions or
schema, and these differences are reflected in the rule sets. A
document type definitions or schema provides better infor-
mation on the logical structure, since it is this structure that is
being defined. One can, in general, have greater certainty that
an element should map to a List or a Table by analyzing the
schema.

The document instance can provide examples of an
element’s use suggesting that a Table is appropriate, but docu-
ment instance cannot guarantee that there will not be some
future instance where a table structure will not work. On the

US 9,286,272 B2

13

other hand, the document instance provides examples of tex-
tual content, and these can be quite useful in trying to estab-
lish where paragraph breaks should be placed. This is a major
factor in the layout of the document.

Examples of heuristic rules that can be used in analyzing
the document instance are as follows:

1. Children of mixed content nodes should be mapped to

Strings

2. If anode just contains text, it should map to a Paragraph

or a String

3. If a node has a repeated child, it should map to a List or

a Table

4. If it has no children then it might be a List or Ignore

5. If its children contain text, then it is a List, and the

children should map to Paragraphs

6. If it has a repeated child that has multiple children it is

likely to be a Table
a. If it is inconsistent with previous examples, then it is
not a Table after all and should map to a List or Group
b. If it is inconsistent only in the number of elements
of the repeated child then it is likely to be a Homo-
geneous List
7. If it has text ending in punctuation, it is more likely to be
a Paragraph

8. If it has text starting with an upper-case character, it is

more likely to be a Paragraph

9. If it has text starting with a quote character, it is more

likely to be a Paragraph

10. Consecutive numbers should map to Paragraphs

11. Three consecutive single words are likely to be data and

should be mapped to Paragraphs

12. If it is a single word, then it is less likely to map to a

String

13. If it is a number, then it is less likely to map to a String

14. Ifthe node name contains the substring “name”, then its

children should map to Strings

15. If the node name contains the substring “date”, then its

children should map to Strings

The rules listed provide a useful set of heuristics for deter-
mining the mapping of a vocabulary to the intermediate form.
However, additional and alternative rules are possible. The
heuristic rule approach is a useful method for analyzing one
or more document instances to solve the problem of deter-
mining the mapping between an arbitrary vocabulary and a
vocabulary designed to capture the document’s logical struc-
ture as can be conveyed through style and layout. The above
rules provide an example of how this approach could be
implemented.

The application of such heuristic rules works well when
used to adjust probabilities of possible mappings instead of
attempting absolute classification. The adjustment of prob-
abilities allows multiple applications of multiple rules and
integration of information from multiple sources.

The following rules apply to the constructs of an extensible
markup language document type definition:

For elements

1. If an element can have any offspring, then it is a Group

2. Empty elements can be Ignored

3. If a child can occur more than once, then the parent may

be a List or Table
a. If the child is a Paragraph then it is a Homogeneous
List
b. If the child is a fixed size, then it is a Table Row
For choices

4. If a child is strongly String or strongly non-String, then

the other children should be so as well

5. If children are Strings, then it is a String or a Paragraph

10

15

40

45

55

60

14

For sequences
6. If it has more than one child and a descendant is a
Paragraph, then it is a Group, List or Table
7.1f it has a member that can have many occurrences, then
it is a List
8. If there are multiple occurrences of one element, then it
is a Homogeneous List
9. If a child is strongly String or strongly non-String then
the other children should be so as well
10. If the children are Strings then it is a String or a Para-
graph (and more likely a Paragraph)
11. If the children are more likely non-String, then it is
probably a List
12. If there are multiple occurrences of a sequence of
Paragraphs, and the sequence is fixed length then it is a
Table and the sequence is a Table Row
13. If there is only one item in the sequence then the
sequence can be mapped to a List
14. Ifthe element name contains the substring “name” then
its children are likely to be Strings
15. If the element name contains the substring “date” then
its children are likely to be Strings
For mixed nodes
16. Children of a mixed node should be Strings
17. If there are multiple occurrences of a child of a mixed
node, then it might be a List, otherwise it is a Paragraph
or a String and most likely a Paragraph
For PC Data
18. Simple text content is a Paragraph or a String but more
likely a Paragraph
An extensible markup language schema is similar to a
document type definition in defining the grammar for a docu-
ment vocabulary, and the rules for document type definitions
can be re-expressed as rules for schemas. However, schemas
let one define types which permits some additional rules to be
used.
For built-in types
1. Built-in types map to String
2. Some built-in types can be recognized as number-like
(e.g. integer, byte, decimal)
For a constructed simple type
3. Lists map to String
4. Unions map to the type of the atoms when all atoms have
the same type, otherwise they map to String
For a complex type
5. If it has simple content (not empty and no children) then
it maps to Paragraph or String but most likely Paragraph
6. If it is empty it can be Ignored
7. If it has mixed content then it most likely maps Para-
graph but also possibly to String
8. The child of a Paragraph or String must be a String
For element-only types
9. If it is an “all” group, then it maps to a Group. Any
children that can be Paragraphs or Strings have the prob-
ability of String diminished and Paragraph strength-
ened.
10. If there is only one child, and that child is not a group
and maxOccurs is greater than 1 then it maps to a List.
11. If there is only one child, and that child is a sequence
group, and maxQOccurs is greater than 1 then it maps to a
Table, the child maps to a TableRow, each member ofthe
child sequence maps to a TableCell
12. If there is only one child, and that child is a choice
group, and all of the choices could be Strings, and
maxOccurs is unbounded, then it maps to Paragraph or
String and the children of the choice have String
strengthened.

US 9,286,272 B2

15

13. If it is a sequence group with more than one member
and some member is a Group or List or Table, then it
maps to a List, and any children that could be Paragraphs
or Strings have Paragraph strengthened and String
diminished.

14. If it is a sequence group with more than one member
and some member has maxOccurs greater than 1, then it
maps to a List, and any children that could be Paragraphs
or Strings have Paragraph strengthened and String
diminished.

15.Ifitis a choice group then if a member is strongly String
then map strongly to String and strengthen String prob-
ability for its children, but if a member is strongly non-
String, then map to Group and diminish the strength of
String in the children.

16. If anode’s name contains the string “name” then make
the children Strings.

17. If the node’s name contains the string “date” then make
the children Strings.

18. If there are two or more children that are number-like in
a row then the children are not Strings, they are Para-
graphs or higher structures.

19. If we have a sequence with a member that is strongly a
String, then the sequence is likely a Paragraph and all
children are more likely Strings

20. If we have a sequence with a member that is strongly
Paragraph or higher, then it is a List and its children are
not likely to be Strings.

21. If we have multiple occurrences of mixed content, then
it might be a List.

The rules listed above provide a useful set of heuristics for
determining the mapping of a vocabulary to the intermediate
form. However, additional and alternative rules are possible.
The heuristic rule approach is a useful method to solve the
problem of determining the mapping between an arbitrary
vocabulary and a vocabulary design to capture the documents
logical structure as can be conveyed through style and layout.
The above rules provide an example of how this approach
could be implemented.

The application of such heuristic rules works well when
used to adjust probabilities of possible mappings instead of
attempting absolute classification. The adjustment of prob-
abilities allows multiple rules to be applied and to let influ-
ence be integrated from multiple information sources.

A format for which generic stylesheets could be written is
provided, and into which arbitrary vocabularies could be
translated. If presented with a document without an appropri-
ate stylesheet, the document without an appropriate
stylesheet is converted to the generic document format and
applies a generic stylesheet from a predefined set.

A process for styling documents first analyzes the docu-
ment to determine structures and features that might be rel-
evant to style decisions. In the second stage, styling is applied
to the structures and features that have been discovered.
While the second stage is applied to the specific document
instance, the first stage can gather information from a variety
of sources. In addition to the document instance, the corre-
sponding schema or document type definitions can be ana-
lyzed; information from other document instances might be
used, and information might be extracted from an inappro-
priate stylesheet that matches the document’s vocabulary.
The second stage processing can designed to apply style
based solely on the discovered features and can thereby be
independent of the particular document instance or its
vocabulary.

A process for applying style to documents is designed for
document encodings such as extensible markup language that

10

15

25

30

40

45

50

65

16

may separate content from style, capturing the style decisions
in the form of a stylesheet. The problem addressed is how to
handle cases where the document content is to be printed or
viewed, but an appropriate stylesheet is unavailable. One may
not have any stylesheets for the given document vocabulary,
or the stylesheets available may be inappropriate to the user’s
interests, or the chosen output device. (This is often the case
with generic stylesheets that may provide too much or too
little information in a suboptimal form).

To realize the above processes, as illustrated in FIG. 4, a
first stage 1000 analyzes the document to determine struc-
tures and features that might be relevant to style decisions. In
the second stage 2000, styling is applied to the structures and
features that have been discovered. While the second stage
2000 is applied to the specific document instance, the first
stage 1000 can gather information from a variety of sources.

As illustrated in FIG. 4, an analyzer 530 analyzes exten-
sible markup language 500, instance document type defini-
tions 510, and instance schema 520 by a document instance
analyzer, document type definitions analyzer, and a schema
analyzer to produce document instance mapping 540, docu-
ment type definitions mapping 550, and schema mapping
560. Information from other document instances might be
used, and information might be extracted from an appropriate
stylesheet that matches the document’s vocabulary. This
additional information enables better understanding of the
document that can in turn enable better styling.

There are several possible ways to capture the information
extracted by the analysis stage. One is to add it to the docu-
ment instance (e.g. as additional attributes). Another is to
create a separate data file that contains the information and
references the elements of the original document instance. A
third is to transform the original document into an interme-
diate form that expresses the discovered structures and fea-
tures. The third approach allows the styling application of the
second stage to follow typical styling methods. It therefore
may permit the use of conventional tools for the creation of
stylesheets for the second stage styling operation.

As further illustrated in FIG. 4, an analyzer 530 examines
the document instance and any matching schemas or docu-
ment type definitions that might be available. The results of
the analysis may be captured in a “mapping file” that indicates
how the original document should be mapped to the interme-
diate format.

This mapping file is fed to a transformation generator 570
which creates a transformation 580 that is applied to the
original document, by an extensible stylesheet language
transformer 590 to generate an instance in the intermediate
format. This completes the first stage 1000 of the processing.

In the second stage 2000, a stylesheet is selected 600 and
applied 610 to the intermediate format to produce the styled
document. In extensible markup language processing this
may be done by first using a transformation engine to decorate
the document with formatting commands in a language such
as extensible stylesheet language formatted object. A format-
ter 620 (such as a formatted object to portable document
format formatter) applies the commands to produce the for-
matted document.

It is noted that generic structural elements alone are not
sufficient to support this scenario. One may know that strings
support the style “bold,” so “bold” should only be applied to
string elements, but perhaps not every string element should
be “bold.”” Some additional attributes are needed to decide
which strings should be “bold” and which should not. In order
to support generic stylesheets, these attributes should also be
generic in nature. Such attributes can be defined, although the
optimal set of attributes is still an open problem. Examples of

US 9,286,272 B2

17

such attributes are: text-like, number-like, name-like,
address-like, date-like, title-like, labeling, summarizing,
attention-grabbing, separating, important, distinctive, depth
in the structure, and similarity to siblings. These attributes are
given numerical values that range between 0 and 1. A generic
stylesheet can use these attributes to differentiate the struc-
tural elements.

For example, a string with a strong title-like attribute might
be styled as bold while those with a low value for the attribute
might be given normal weight. The above approach requires
that a set of generic stylesheets be constructed and available
for use on documents that are converted to the generic docu-
ment format. The above approach addresses the question of
adapting an existing non-generic stylesheet for generic use.
This can make it easier to create a library of generic
stylesheets and may allow one to apply a favorite stylesheet to
a document in a vocabulary different from the one for which
it was written. The method applies to stylesheets such as those
in extensible stylesheet language transform that contain
extensible path patterns and expressions for the document
elements.

The method assumes there is a mapping from the stylesheet
vocabulary to the elements and attributes of a generic docu-
ment format such as the one referenced above. The stylesheet
references are automatically replaced with specific elements
in a vocabulary by references to a generic element and a set of
attribute tests that result in the same selection.

This approach will work for simple stylesheets that apply
styles according to element name. Complex stylesheets that
make use of other document properties such as the structural
relationships between elements may not work as well on other
vocabularies that may not have those relationships, even
though they are converted to the generic document format.
The fundamental problem of converting a stylesheet to a
generic form is to find a set of generic attribute tests that will
select for a particular element.

It is noted that elements are first distinguished by their
generic structural type (string, paragraph, list, table, etc). An
element is distinguished that maps to a string from other
elements that also map to a string. An attribute test is not
needed to differentiate string elements from table elements
because the element type already does this.

The first step is to group the elements by structural type,
and to use only the attributes to distinguish elements within a
structural type. The elements that need to be distinguished
from one another into a set are gathered, and then the set with
attribute tests are recursively subdivided until single sets are
realized, or until the set elements can no longer be distin-
guished by their attributes.

An average value for each attribute for each element is
captured. If the document instance is being used to determine
attribute values, there can be more than one appearance of an
element type in the document instance. This appearance of
more than one element type in the document instance is dealt
with that by averaging the attribute values calculated for each
appearance. For the set of elements that needed to be subdi-
vided, each attribute and for the attribute determined the size
of'the largest separation between the values from the elements
in the set are analyzed.

From the analysis, it can be decided which attribute has the
largest gap and this attribute for the test that subdivides the set
can be used. A threshold at the midpoint of the gap is set and
all elements with an attribute value below the threshold are
collected in one set, while those with values above the thresh-
old form another set. The attribute threshold test is added to
the tests that define the sets.

10

15

20

25

30

35

40

45

50

55

60

18

The process is recursively repeated on each of the two new
subsets to further divide them until single element sets are
obtained (or no gaps are found in the attribute values). At each
division, another test is added to the collection needed to
define the set, so that when a single element set is obtained,
the corresponding collection of attribute tests provides a
generic alternative expression for the element.
Another implementation replaces the average attribute val-
ues with ranges or intervals for values. As before, gaps in
values for each attribute may be realized, only in this imple-
mentation the gaps between the value intervals are analyzed.
The intervals provide a more realistic characterization of the
element’s behavior with respect to the attribute and allow
gaps and threshold to be selected that are more likely to
distinguish elements found in new documents.
Once a generic replacement has been determined for each
element the stylesheet can be transformed or converted. The
process parses the patterns and expression in the stylesheet
looking for explicit element references. When such a refer-
enceis found it is replaced by a reference to the corresponding
generic element with the corresponding attribute tests.
In summary, the extensible markup language document
processing engine performs arbitrary processing on exten-
sible markup language documents. The processing sequence
of the extensible markup language document processing
engine is not fixed, but rather can depend upon the informa-
tion submitted with the job and upon determinations and
analysis during the actual job processing. The extensible
markup language document processing engine can also seg-
ment the document processing so that different fragments of
the document are handled differently, thereby providing par-
allel processing capabilities. Moreover, the extensible
markup language document processing engine can segment
the document processing so that different fragments of the
document are handled differently so that not all processing is
blocked when a fragment requires a slow action, such as
retrieval of information from the web.
It will be appreciated that various of the above-disclosed
and other features and functions, or alternatives thereof, may
be desirably combined into many other different systems or
applications. Also that various presently unforeseen or unan-
ticipated alternatives, modifications, variations or improve-
ments therein may be subsequently made by those skilled in
the art which are also intended to be encompassed by the
following claims.
What is claimed is:
1. A method for providing a transformation from an exten-
sible markup language document having an arbitrary vocabu-
lary to a document instance in an intermediate format, com-
prising:
analyzing, using a set of heuristic rules, a document
instance of the extensible markup language document
having the arbitrary vocabulary to determine a mapping
between the arbitrary vocabulary of the extensible
markup language document and a vocabulary designed
to express a logical structure of the extensible markup
language document having the arbitrary vocabulary;

analyzing instance schema of the original document to
produce a schema mapping; and

generating a transformation from the determined mapping

and the produced schema mapping.

2. The method as claimed in claim 1, wherein a logical
structure element is a paragraph.

3. The method as claimed in claim 1, wherein a logical
structure element is a group.

4. The method as claimed in claim 1, wherein a logical
structure element is an ordered list.

US 9,286,272 B2

19

5. The method as claimed in claim 1, wherein a logical
structure element is a table.

6. The method as claimed in claim 1, wherein a logical
structure element is a text string.

7. The method as claimed in claim 1, wherein the document
instance in an intermediate format includes content charac-
terization attributes.

8. The method as claimed in claim 7, wherein the content
characterization attributes include attributes that capture the
type of the content.

9. The method as claimed in claim 7, wherein the content
characterization attributes include attributes that capture the
function of the content.

10. The method as claimed in claim 7, wherein the content
characterization attributes include attributes that capture the
structural characteristics of the content.

#* #* #* #* #*

10

15

20

